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A Additional analyses

To further understand the contributions of each component in our method as well as the impact of
various design choices, we conduct a series of ablation studies on the SPair-71k dataset [7]. The
quantitative results are reported in terms of PCK at different κ thresholds, and we sample 20 pairs for
each category.

A.1 Effect of UNet layers

Table 1: Ablation study on SPair-71k: number of UNet layer. We report PCK@κ (κ = 0.01, 0.05, 0.10) for
each setting and both the Stable Diffusion and Fuse-ViT-B/14 methods. Default setting is underlined.

Stable Diffusion Fuse-ViT-B/14

Setting 0.01 0.05 0.10 0.01 0.05 0.10

2 5 8 1.2 19.2 39.2 5.7 40.1 58.3
2 5 8 4.9 39.5 54.2 7.0 46.4 61.6
2 5 8 4.3 23.9 31.7 7.0 42.2 55.5
2 5 8 4.8 38.8 53.1 6.9 45.7 61.6
2 5 8 4.5 30.5 42.6 7.6 43.0 59.3
2 5 8 5.7 40.5 53.0 7.6 46.8 61.8
2 5 8 5.6 39.9 53.4 7.7 46.2 62.2

We analyze how features extracted at different layers in the U-Net architecture affect the accuracy,
specifically at layers 2, 5, and 8, for the Stable Diffusion (SD) and Fuse-ViT-B/14 methods. The
experiment results in Tab. 1 suggest that layer 5 alone provides substantial performance for both the
Stable Diffusion and the fused features, while gathering all three layers further improves the overall
performance for the fused features.

Table 2: Ablation study on SPair-71k: location of UNet layer. We report PCK@κ (κ = 0.01, 0.05, 0.10) for
each setting and both the Stable Diffusion and Fuse-ViT-B/14 methods. Default setting is underlined.

Stable Diffusion Fuse-ViT-B/14

Setting (with the layer 5) 0.01 0.05 0.10 0.01 0.05 0.10

Conv. features 4.0 25.3 37.1 6.7 44.3 57.3
Self-attn features 4.1 23.1 34.0 6.1 45.0 56.7
Encoder features 3.2 19.8 27.7 5.3 39.1 53.5
Encoder & Decoder features 4.9 39.5 54.2 7.0 46.4 61.6
Decoder features 5.3 39.9 54.8 7.1 47.0 62.1

We also analyze how the exact location of feature extraction affects the performance. As shown
in Tab. 2, we empirically find that using only the decoder feature achieves better performance than
combining it with the skip-connected encoder feature, and also outperforms the features of a single
sub-layer such convolutional or self-attention layer.

A.2 Effect of dimensionality reduction

We assess the effects of different dimension reduction techniques, specifically the projection layer
pre-trained on panoptic segmentation as presented in [12], as well as Principal Component Analysis
(PCA) with varying projection dimensions. As shown in Tab. 3, we observe that the projection layer
from [12], owing to its training on a different task, leads to a performance drop. On the other hand,
both the stable diffusion features and the fused features exhibit robustness with respect to different
projection dimensions in PCA.

A.3 Effect of fusion strategy

We experiment with different fusion strategies for combining the feature maps from stable diffusion
and DINO. The strategies include element-wise addition (FFUSE = FSD + FDINO, both with and
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Table 3: Ablation study on SPair-71k: Reduction. We report PCK@κ (κ = 0.01, 0.05, 0.10) for each setting
and both the Stable Diffusion and Fuse-ViT-B/14 methods. Default setting is underlined.

Stable Diffusion Fuse-ViT-B/14

Setting 0.01 0.05 0.10 0.01 0.05 0.10

Projection layer [12] 5.7 34.8 46.0 7.5 44.9 59.9
PCA (dim = 384) 5.7 39.5 53.0 7.7 46.3 61.8
PCA (dim= 256) 5.6 39.9 53.4 7.7 46.2 62.2
PCA (dim = 128) 5.4 39.9 52.8 7.4 45.7 61.9

Table 4: Ablation study of Fuse-ViT-B/14 on SPair-71k: Fuse Strategy. We report PCK@κ (κ =
0.01, 0.05, 0.10) for each setting. Default setting is underlined.

Setting 0.01 0.05 0.10

FFUSE = FSD + FDINO 6.8 43.6 57.7
FFUSE = ||FSD||2 + ||FDINO||2 6.9 43.7 57.8

FFUSE = (FSD, FDINO) 6.7 43.6 57.9
FFUSE = (||FSD||2, ||FDINO||2) 7.7 46.2 62.2

without independent normalization), concatenation without normalization (FFUSE = (FSD, FDINO)),
the results demonstrate that our fusion strategy, only concatenation with normalization, stands out
among the others, as shown in Tab. 4.

A.4 Effect of captioner and timestep

Table 5: The PCK performance on SPair-71k for both implicit and explicit captioner under different
timesteps. Best results between captioner are bold, best results among different timesteps are italicized.

Method Captioner 0 50 100 150 200

SD Implicit 54.93 55.67 56.18 55.11 55.11
Explicit 53.58 55.63 55.90 55.45 55.15

Fuse Implicit 63.25 63.10 63.28 62.46 62.50
Explicit 62.20 62.50 62.61 62.72 62.32

We further analyze the influence of timesteps during feature extraction and the use of either implicit
or explicit captioners. Tab. 5 reports the PCK@0.10 performance of Diffusion features and Fused
features in the SPair-71k 20-samples subset, when implicit and explicit textural (specifically, “a photo
of {object category}”) inputs are given.

Captioner. Overall, there are only marginal differences. The explicit textual inputs help in earlier
steps (200 steps), while implicit captioner helps in denoised images. We conjecture that this is due to
the implicit captioner from ODISE [12] being trained with t = 0.

Timestep. Our method extracts features at the time step 100 of 1000. As shown in Tab. 5, changing
the timestep for feature extraction yields only marginal variations in accuracy. The timestep 100 was
determined to be optimal through a search on the validation set.

ODISE [12] finds that t = 0 yields optimal results. This would be the case for semantic segmentation
where a denoised image with clear object boundaries is critical for the accuracy. However, for
semantic correspondence where semantic information is also important, feature maps with more
structural information at a little bit earlier denoising step may help better.

A.5 Effect of model variants

Stable Diffusion. We conduct extensive evaluations on multiple variants of the SD model, varying
both in architecture and training configurations. Specifically, alternative training settings such as SD-1-
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Table 6: Comparison of different variants of SD models on SPair-71k, we use explicit captioner for fair
comparison. The best results are bold.

Method PCK@0.10 PCK@0.05 PCK@0.01

SD-tiny 41.07 28.67 5.21
SD-small 51.05 38.33 6.28
SD-1-3 55.30 42.72 7.72
SD-1-5 55.90 42.76 7.01
SD-2-1-base 54.43 41.68 7.19
SD-XL 56.46 40.26 5.60

DINOv2-vitb14 55.15 39.66 6.12
Fuse-vitb-tiny 56.96 42.35 7.27
Fuse-vitb-small 60.36 45.08 7.95
Fuse-vitb-1-3 62.69 47.09 8.25
Fuse-vitb-1-5 62.61 46.60 8.47
Fuse-vitb-2-1-base 62.22 46.10 8.40
Fuse-vitb-XL 61.31 45.00 7.99

3 and SD-2-1-base are assessed alongside the main SD model. Additionally, distilled architectures [6]
like SD-tiny and SD-small, which respectively comprise 45% and 65% fewer parameters than the
base model, are considered. Plus, we also test a larger version of SD, i.e., SD-XL [9], with 3× larger
UNet as SD-1-5. As reported in Tab. 6, the performance variations across these SD base models are
relatively minor. Yet, when combined with DINOv2, even the distilled variants, despite their slight
performance deficits in isolation, lead to notable improvements.

Table 7: Comparison of different variants of DINO models. The best results are bold.

Method PCK@0.10 PCK@0.05 PCK@0.01

DINOv1-vitb16 33.17 19.93 2.43
iBOT-vitb16 38.85 23.90 2.63
DINOv2-vits14 53.28 37.20 5.86
DINOv2-vitb14 55.15 39.66 6.12

Stable Diffusion 56.18 42.80 6.79
Fuse-DINOv1-vitb16 51.79 37.50 5.34
Fuse-iBOT-vitb16 55.11 38.99 4.85
Fuse-DINOv2-vits14 61.34 46.57 7.84
Fuse-DINOv2-vitb14 63.28 47.61 8.32

DINO. We also test different DINOv2 variants, including a smaller version, DINOv2-vits14, which
has about 25% network parameters of the base DINOv2 model, and two variants with different
training objectives and datasets, namely DINOv1 and iBOT. As shown in Tab. 7, DINOv2 small
model, though with substantially less parameters, still delivers comparable results to the base model.
This suggests that while capacity plays a role, the core techniques remain effective even with a
significantly smaller model. However, for DINOv1 and iBOT, a zero-shot fusion with SD slightly
decreases the overall performance. We hypothesize that this may be due to the relatively weak
performance of DINOv1 and iBOT; if these features are strictly worse than SD features, they may
only contribute noise to the zero-shot fusion results. A learned projection would enable fusion to
ignore features that decrease the overall performance and at least perform similarly to SD by itself.

A.6 Effect of keypoint annotation and input image resolution

We assess the implications of varying the resolution of both keypoint annotations and input images
on the performance. An in-depth examination of the PCK performance on the SPair-71k 20-samples
subset, considering multiple input resolutions and annotation resolutions, can be found in Tab. 8. No-
tably, similar to the observations from PWarpC’s [10] Table 1, using different annotation resolutions
only marginally affects the accuracy. On the other hand, as in CATs++ [4], we also observe that input
image’s resolution matters more, especially under stricter constraints (e.g., PCK@0.05 and 0.01).
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Table 8: PCK performance of fused features on SPair-71k, under different input image resolution and keypoint
annotation resolution.

Input Image Resolution Annotation Resolution 0.10 0.05 0.01

960 (feat. map 60*60)
840 63.28 47.61 8.32

original 62.80 47.36 8.11
256 62.54 47.58 8.36

512 (feat. map 32*32)
840 61.66 40.73 4.58

original 61.58 40.43 4.28
256 61.51 40.35 4.40

A.7 Effect of fusion weight α

As denoted in Eq. (2) in the main paper, our fusion feature is a weighted sum of two normalized
features, Stable Diffusion (SD) and DINO, FFUSE = (α||FSD||2, (1− α)||FDINO||2), where α is a
hyper parameter that controls the balance of the contributions between the two features. We examine
how different α values affect correspondence matching results via qualitative analysis as shown
in Fig. 1.

Input 0 (DINOv2) 0.20 0.35 0.50 0.65 0.80 1 (SD)

Figure 1: Visualization of the dense correspondence across varying α. We visualize both the color map and
the swapped image corresponding to the source image.

As observed in Fig. 1, as α shifts from 0 (entirely DINO features) to 1 (purely SD features), the noisy
correspondence map gradually becomes smooth, but slightly less precise (e.g. the left thigh part of
the person). Notably, α = 0.5 strikes a beneficial balance, harnessing the complementary strengths
of both features.

A.8 Effect of refinement for instance swapping

In Sec. 4.3, we introduce a refinement step in our instance swapping process, aiming to elevate
the quality and the realistic of the swapped instances. In this section, we provide a quantitative
assessment of this refinement process.

Table 9: Quantitative comparison of different methods on instance swapping. We report the FID score,
quality score, and CLIP score for three methods with and without refinement. The best results are bold.

Method FID score (CLIP-based)↓ Quality score↑ CLIP score↑

DINOv2 (w/o refinement) 11.28 60.43 67.72
SD (w/o refinement) 12.01 58.32 65.99
Fused (w/o refinement) 10.93 62.03 68.25
DINOv2 (w/ refinement) 12.49 63.18 72.63
SD (w/ refinement) 13.72 61.38 71.48
Fused (w/ refinement) 12.47 64.84 73.21

Tab. 9 depicts the influence of the refinement step on the resulting Quality scores and CLIP similarity
scores. Remarkably, we observe a significant increase in these scores after applying the refinement.
This improvement is particularly pronounced for the CLIP similarity scores, validating the intended
benefit of this additional step.
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However, an unexpected outcome of the refinement process is observed in the Fréchet Inception
Distance (FID) scores, which tend to increase after refinement across all methods. This suggests that
while the refinement step improves certain metrics, it may also introduce certain artifacts that amplify
the discrepancy with the distribution of real images, thus leading to lower FID scores.

For a comprehensive understanding of the artifacts introduced by the refinement process, particularly
from the DDIM inversion, we direct readers to Appendix B.3. Moreover, we provide a qualitative
comparison between results with and without the refinement step in Appendix B.2, offering a more
intuitive grasp of the refinement’s impact on instance swapping.

A.9 Analysis of DINO features

To better understand the signals provided by SD features, we introduce two variants to offset the
limitations of DINO features. Both variants are designed to harness different aspects that contribute to
improving the performance of DINO features. The first variant, dubbed Filter-ViT-B/14, incorporates
a bilateral filter to enhance the smoothness of the features. The second variant, Ensemble-ViT-B/14,
combines an early layer (layer 9) with the last layer to capture more spatial information.

As shown in Tab. 10, our handcrafted adjustments to DINO features result in an improved performance
compared to the original DINOv2-ViT-B/14 model. This validates our strategies, underlining the
importance of smoothness and spatial context in the dense correspondence task. However, it’s worth
noting that these adjustments offer only marginal improvements. This suggests that there are other
valuable signals provided by SD features that we have yet to uncover, and it also reaffirms the efficacy
of our fusion approach, Fuse-ViT-B/14. We will continue our exploration in future work.

Table 10: Performance comparison of DINOv2 variants. Each variant attempts to enhance the DINOv2
features by addressing its limitations. Filter-ViT-B/14 employs a bilateral filter for smoothness, while Ensemble-
ViT-B/14 combines early and last layers to capture more spatial information. We also include the result of our
method, Fused-ViT-B/14, for reference.

SPair-71k PF-Pascal TSS, PCK@0.05

Method 0.01 0.05 0.10 0.05 0.10 0.15 FG3DCar JODS Pascal Avg.

DINOv2-ViT-B/14 5.8 40.0 55.4 61.1 77.3 83.3 82.8 73.9 53.9 72.0
Filter-ViT-B/14 4.7 37.4 55.3 61.6 79.0 84.6 86.4 76.0 60.3 76.2
Ensemble-ViT-B/14 6.4 40.7 56.1 62.6 79.7 86.1 84.7 74.2 59.7 74.8
Fuse-ViT-B/14 8.2 47.5 62.9 72.1 86.0 90.6 94.3 73.2 60.9 79.7

A.10 Quantitative analysis on features fusion

In this section, we aim to investigate the complementary nature of SD and DINO features through a
quantitative analysis. By considering eight possible combinations of the performance of SD, DINO,
and fused features, we explore how their fusion potentially enhances the overall effectiveness.

The hypothesis driving our investigation is that: 1) when SD features produce false matches, their
feature distance to the correct matches could be marginally higher than that to the false matches; 2)
Conversely, the DINO feature distance to the correct matches could be significantly smaller than that
to the SD’s false matches. Thus, by fusing these two features, the resulting representation could be
pushed closer to the correct matches and further away from the false ones.

Distribution of outcomes. Tab. 11 shows the distribution of eight possible outcomes when SD,
DINO, and fused features are used for generating correct correspondences. We notice that in scenarios
where DINO or SD feature works individually and the other fails, but the fusion works (i.e., notations
011 and 101) account for considerable proportions of cases. More importantly, these scenarios play
the most crucial role in making the fused features work correctly. This finding supports our hypothesis
about the complementary nature of SD and DINO features in terms of their fusion.

Discussion on conditional probability. Turning our attention to the conditional probabilities
illustrated in Fig. 2, it is evident that the fusion approach enhances the overall probability of success.
We can summarize this in four categories:
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Table 11: Distribution of eight possible outcomes for SD, DINO, and fused features regarding their success
(denoted by “"”) or failure (denoted by “%”) in generating correct correspondences, based on the PCK@0.10
measured on the SPair-71K test set. We underline the cases where fused is correct.

SD DINO Fused Notation Interpretation Ratio

% % % 000 SD, DINO, and Fused all fail 26.30%
% % " 001 SD and DINO fail, Fused correct 2.90%
% " % 010 SD and Fused fail, DINO correct 5.82%
% " " 011 SD fails, DINO and Fused correct 9.94%
" % % 100 DINO and Fused fail, SD correct 4.57%
" % " 101 DINO fails, SD and Fused correct 10.76%
" " % 110 Fused fails, SD and DINO correct 0.38%
" " " 111 SD, DINO, and Fused all correct 39.28%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Both SD and DINO Fail SD Fails, DINO correct SD correct, DINO Fails Both SD and DINO correct

Fused fails Fused correct

Figure 2: Conditional probabilities illustrating the performance of fused features under different scenarios
with SD and DINO features.

1. When both SD and DINO features fail to produce correct correspondences (the 1st group),
the fused feature manages to rectify this 10.0% of the time.

2. When SD features fail but DINO features succeed (the 2nd group), the fused feature
successfully produces correct correspondences 63.1% of the time.

3. When SD features succeed but DINO features fail (the 3rd group), the fused feature achieves
a success rate of 70.2%.

4. When both SD and DINO features succeed (the 4th group), the fused feature fails very rarely,
with a failure rate of only 1.0%.

These results confirm the complementary nature of the SD and DINO features. Even when both SD
and DINO individually fail to generate correct correspondences, the fused feature can occasionally
correct these errors. On the other hand, if either SD or DINO feature is correct, the fused feature
is highly likely to also be correct. Finally, when both SD and DINO are correct, the fused feature
almost always retains this accuracy. These observations lend further credibility to the efficacy of our
feature fusion approach in augmenting the success rate of correct correspondence generation.

Analysis of relative distance. To delve deeper into why feature fusion succeeds in scenarios 011
and 101, we introduce a metric called “relative distance”. Given a specific point in the source image
and a corresponding point in the target image, we calculate the distances from the source point to all
points in the target image. We then normalize the distance to the target point, using the minimum and
maximum distances. This normalized distance, or “relative distance”, provides a measure of feature
matching confidence, with smaller distances indicating higher confidence.

Tab. 12 illustrates the relative distances for SD and DINO features under scenarios 011 and 101. In
the case of scenario 011, the relative distance of the correct match under SD features is 0.156, which
is lower than the average relative distance of 0.218 for correct matches. This underscores that SD
features exhibit a higher confidence for correct matches under this scenario, which lends credence
to our hypothesis that when SD features produce false matches, the feature distance to the correct
matches tends to be marginally lower.
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Table 12: Relative distances for SD and DINO features for both correct matches and false matches under
scenarios 011 and 101, compared with the average situation. The false matches indicate the matches falsely
identified by the other feature.

SD Features DINO Features

Scenario Correct Match False Match Correct Match False Match

011 0.156 – – 0.328
101 – 0.248 0.141 –
Average 0.218 0.200 0.198 0.239

Furthermore, for the DINO features in the same scenario, the relative distance of SD’s false match is
0.328, significantly higher than the average situation (0.239). This observation implies that DINO
features generally exhibit lower confidence in matches that SD falsely identifies, thereby supporting
our hypothesis that the DINO feature distance to the correct matches could be significantly smaller
than that to the false matches produced by SD.

In scenario 101, the roles of SD and DINO features are reversed, but the trends observed in scenario
011 continue to hold true. The relative distance of the false match under SD features is 0.248, while
the relative distance of the correct match under DINO features is 0.141. Once again, these results
strengthen our belief in the complementary nature of SD and DINO features, where the strengths of
one feature compensate for the weaknesses of the other.

These findings, therefore, shed light on why fusion works effectively under scenarios 011 and 101
and provides empirical evidence for our hypothesis of the complementary nature of SD and DINO
features.

B Additional results

We provide additional qualitative and quantitative results in this section.

B.1 Dense correspondence

We present additional qualitative result for both SPair-71k ( Figs. 3 and 4) and DAVIS ( Fig. 5)
datasets.

Source Target             Stable Diffusion DINOv2 Fused

Figure 3: Dense correspondence on SPair-71k (rigid).

B.2 Instance swapping

We present qualitative comparison of instance swapping on Paint-by-Exaple [13] dataset in Fig. 6.
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Source Target             Stable Diffusion DINOv2 Fused

Figure 4: Dense correspondence on SPair-71k (non-rigid).

Source Target             Stable Diffusion DINOv2 Fused

Figure 5: Dense correspondence on DAVIS. The results are for both real images and annotation maps as inputs.
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Source           Target     SD DINOv2 Fused                SD DINOv2 Fused

w/o refinement       w/ refinement

Figure 6: Qualitative comparison on instance swapping. We present the results of both w/o and w/ refinement.

B.3 Failure cases

We present two types of failure cases in Fig. 7.

B.4 Results for CUB-200 dataset

We evaluated our method on the CUB-200 [11] dataset, which comprises over 200 fine-grained bird
categories. With the ASIC protocol [5], we compare our approach with various methods on the first
three categories subsets of the dataset, in Tab. 13.
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Source           Target     SD DINOv2 Fused                SD DINOv2 Fused

w/o refinement       w/ refinement

(a)

(b)

Figure 7: Failure cases. (a) When the relative size of instance of interest is tiny in the image, (b) Artifacts
introduced by DDIM inversion.

Table 13: Quantitative comparison on the CUB-200 subsets. UT denotes the task-specific unsupervised
methods, and UN denotes the nearest-neighbor-based unsupervised methods. The best performance in bold.

Method PCK@0.1 PCK@0.05 PCK@0.01

UT VGG+MLS [1] 25.8 18.3 -
DINOv1+MLS [1, 3] 67.0 52.0 -
ASIC [5] 75.9 57.9 -

UN DINOv1+NN [2] 68.3 52.8 -
DINOv2-ViT-B/14 80.0 65.6 12.7
Stable Diffusion (Ours) 61.4 46.7 8.7
Fused (α = 0.5) (Ours) 79.2 64.6 14.3
Fused (α = 0.8) (Ours) 80.3 66.2 12.2

Our approach outperforms other methods across all thresholds, especially showing substantial
improvement on the challenging PCK@0.01 metric. Our fusion approach again yields superior results
compared to each feature, DINOv2 and Stable Diffusion. validating the efficacy of our approach.

C Data License

In our paper, all utilized images are either sourced from the following publicly available datasets or
generated for research purposes. Here we provide the data sources and their corresponding licenses.

1. DAVIS: The Densely Annotated VIdeo Segmentation (DAVIS) dataset is extensively used
in our work. The dataset can be accessed at https://davischallenge.org/. It is dis-
tributed under the BSD License (https://github.com/fperazzi/davis-2017/blob/
main/LICENSE).

2. PASCAL-VOC: The PASCAL Visual Object Classes (VOC) dataset is another source of our
images. The dataset can be accessed at http://host.robots.ox.ac.uk/pascal/VOC.
The PASCAL VOC data is provided under the Flickr terms of use https://www.flickr.
com/help/terms.

3. MSCOCO: Certain images used in our work are taken from the Microsoft Common Objects
in Context (MSCOCO) dataset. This dataset can be accessed at https://cocodataset.
org/. The license for MSCOCO can be found at https://creativecommons.org/
licenses/by/4.0/.
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For all generated images in this paper, we affirm that they are exclusively produced for the purpose of
academic research.

D Broader Impact

Our work has presented an innovative representation for semantic correspondence, achieved by
examining the properties of SD features and DINOv2 features, and applying a fusion method to
leverage their complementary strengths. Although the emphasis of this paper was not on the adaptation
of task-specific methods, our approach can potentially serve as a valuable addition to such techniques.

For instance, our method could be integrated as a feature extractor within existing systems, such
as those proposed in [5, 8]. We suggest that our method, if used in place of their existing feature
extractors, might offer new opportunities for enhancement. It may open avenues for potential
improvements to existing task-specific approaches.

However, like any technology, misuse could lead to negative implications. High-quality object
swapping might be used maliciously to create deceptive or misleading imagery. As we continue our
research, we are committed to considering both the positive and potential negative impacts of our
work, striving to contribute responsibly to the advancement of computer vision technology.

E Discussions

We acknowledge that the models utilized in our study, namely Stable Diffusion and DINOv2, may
have been exposed to some of the images from PF-PASCAL, SPair-71k, CUB-200, etc., during their
training phase. However, considering the colossal scale of the datasets used for training these models
– 2B images for Stable Diffusion and 142M for DINOv2 – the chance that the models could distinctly
remember a small number of images (∼1K) from these datasets is extraordinarily low, less than
0.00005% and 0.0007% for SD and DINOv2, respectively. Moreover, the vast difference in training
objectives between these models and our tasks further minimizes any potential influence. Thus, any
potential impact on our study’s results from this overlap is likely negligible.
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